补充表1中描述了所使用的藻类菌株的细节。如先前所述,制备了Fucus胚胎78。简而言之,配子被允许在2升天然海水(NSW)中释放,并使用几个新南威尔士州浴室进行女配子和男配...
补充表1中描述了所使用的藻类菌株的细节 。如先前所述 ,制备了Fucus胚胎78。简而言之,配子被允许在2升天然海水(NSW)中释放,并使用几个新南威尔士州浴室进行女配子和男配子的光疗法进行清洁。然后 ,将配子混合在一起1小时,并清洁新鲜的Zygotes与女配子一样 。F. serratus和F. distichus胚胎高度同步生长,并且在特定的发育阶段将闪烁至少10,000个发育的胚胎(参见扩展数据图5)。在新南威尔士州(F. serratus)或10°C下在稀释的新南威尔士州(F. distichus)中生长胚胎,并在10°C中添加了一周 ,用geo2(0.4 mg l -1)生长,以避免硅藻的生长。媒体每周更改。对于两种富孔,在中性的日期(12 h/12 h白天/夜间周期)下生长胚胎 。如先前所述80所述 ,在富含普罗逊的NSW(PES)79 a 12 h/12 h/12 h的白天/夜间周期和20 µmol光子M-2 S-1辐照度的新南威尔士州(PES)79 a 12 h/12 h/12 h/12 h/12 h/12 h/12 h/12 h/12 h/12 h/12。
海带配子体在50%PES中生长在50%PES中,碘富集在14°C下在14 h/10 h/10 h的白天/夜间周期下在14°C下生长。为了诱导生育能力,使用砂浆和杵仔细地磨碎了配子体簇 ,并且配子体片段以低密度播种(大约500个配子体每CM2) 。在12°C和20–30 µmol光子M-2 s-1白光下,在16 h/8 h的日/夜周期中以全强度PES诱导了配子体成熟度。7天后收集了带有可见gametangia的肥沃的配子体。两性均共培养以诱导成熟度和孢子体的产生 。如补充表1中所述,从桑特克(法国) ,法国(法国)和基尔(德国)收集了现场样品。
请注意,Fucus和Ectocarpus是广播产卵者,在周围的海水中释放了配子 ,随后发生了。因此,可以在大量复制的单个克隆中遵循早期发展,这些克隆高度同步而没有潜在污染父母组织,从而极大地促进了实验方法 。同时 ,在L. digitata和S. polyschides中,获得生物材料的访问是具有挑战性的,从而使这些物种的数据集较少。例如 ,获得足够数量的L. digitata的早期孢子体阶段受到其附着在母体配子体上的影响。
将粉状和海带的成年组织迅速刷,然后用过滤和高压灭菌的新南威尔士州冲洗 。诸如Holdfast,STIPE ,分生组织,营养组织和生殖尖端等不同部分被切成0.5-1 cm的碎片,并转移到1.5 mL低位的Eppendorf管中。将管子在液体N2中冷冻 ,并在-80°C下储存,直到进一步加工,如在Fucus和Kelp发育的其他阶段以及Ectocarpus的其他阶段所做的那样。
RNA提取方案遵循先前的出版物71,82 ,并在补充表1中进行了描述。Snap-frozen藻类是干燥的,在液体N2/干冰中用杵进行干燥,并与750μl新鲜准备的RNA-RNA-萃取缓冲液混合(100 mm Tris-HCl PH8.0)52365-50G); 1%β-苯二醇;然后将250μl5 m NaCl添加到管中 。添加等体积的氯仿:添加异氧化含量(24:1),并在4°C下以10,000g离心15分钟。将水相移入无RNase的管中 ,并用250μl纯乙醇和等体积的氯仿:等体含量(24:1)提取。通过将LICL(Thermo Fisher,AM9480)与最终浓度相结合,将RNA与1%体积的β-甲醇乙醇一起添加到最终浓度中 ,并在-20°C下混合和孵育过夜 。
通过全速离心(> 18,000g)在4°C下以45分钟至1 h的速度将RNA固定。用70%的冷乙醇洗涤RNA,并将沉淀干燥3-5分钟,然后将RNA溶解在30μl无RNase的H2O中。根据制造商的说明 ,使用Turbo DNase试剂盒(Thermo Fisher,AM1907)消除了残留DNA 。最终的RNA浓度和尺寸分布使用量子(RNA BR分析试剂盒,Invitrogen ,Q10210)和RNA纳米生物分析仪(Agilent,5067-1511)确定。
根据制造商的说明,使用市售套件制备RNA-Seq库。使用相应的NEB试剂盒(E7490)对mRNA富集进行多A选择 ,然后使用NEB的定向RNA库准备套件(E7765)进行库制备 。单个细胞/低输入RNA库Prep套件(NEB,E6420)用于合成其他cDNA,并为样品准备测序库,在这些样品中无法获得大量材料(Ectocarpus中的孢子虫和mitosospores; ectocarpus in ectocarpus;早期Spss; r. digitata in L. digitata; Matga in S. polyschides; Matga in S. polyschides; ate s. polyschides in Cepprethys)(补充)1)(补充)1)。使用Bioanalyzer分析来评估插入大小的分析 ,使用量子1×DsDNA HS HS分析试剂盒(Invitrogen,Q33230)来确定库的最终DNA浓度和DNA高敏感试剂盒(Agilent,5067-4626)来评估插入大小的分布。
测序是在NextSeq2000仪器上进行测序套件P3-300(Illumina) 。汇总了库进行测序 ,以使每个库中我们获得了大约30,000,000个读取,对应于9 GB的数据(补充表1)。
使用NF核/RNASEQ管道v3.583,84处理RNA-Seq数据集。对于所有三个物种,使用鲑鱼V1.5.285进行表达定量 ,以确保一致性,并使用tximport v1.26.186进口r。对于胞外果,RNA-seq读数被伪映射到从ectocarpus物种7 Genome11的第2版中推断的每个基因的转录本 。对于L. digitata和S. polyschides ,应用了最近发表的Genomes12。先前发表的多雪链螺芯IMMGA DATA71被重新映射以保持一致性。由于F. serratus和F. distichus无法使用高质量的公共基因组,因此对最近出版的从头转录组组件进行了量化74 。
我们从后续分析中排除了以下2个以下样本的平均长度尺度TPM(百万)的基因。在称为“ denoed”的分析中,我们使用noisyr v1.0.044的“计数 ”模式进一步删除了具有噪声样行为的基因。
TAI捕获给定转录组的平均基因年龄 ,并由每个基因的表达水平加权5,41 。基于基因组神经术87,使用属v1.042推断出Ectocarpus,F。serratus,F。distichus ,L 。digitata和S. polyschides中每个基因的相对年龄。简而言之,使用Diamond v2.0.14(“敏感”模式; e Value< 10−5)90. Next, search hits are filtered by their distribution across taxonomic nodes until the most distant taxonomic node is determined as the ‘gene age’ (or removed as potential contamination), with the evolutionarily oldest genes assigned as phylostratum (PS) 1 and the youngest assigned as PS 8 in F. serratus, F. distichus and S. polyschides, PS 10 in L. digitata and PS 11 in Ectocarpus. PS 7 corresponds to the origin of brown algae (complex multicellularity). For genes with more than one isoform, the age of the oldest isoform was used. Thus, after filtering lowly expressed genes across all samples (TPM < 2) and potential contaminations, we obtained expression and evolutionary data for 8,291 genes in F. serratus, 7,907 genes in F. distichus and 11,571 genes in Ectocarpus. Using myTAI v1.0.1.900041, TAI was calculated for each stage (TAIs) as follows,
where psi denotes the relative gene age (phylostratum) for a given gene i. The term eis denotes the expression level of a given gene at developmental stage s and n denotes the total number of genes.
The expression level was captured using TPM values, since we are quantifying the relative abundance of mRNA molecules per gene rather than the count of sequencing fragments. To test the stability of the TAI profiles and reduce the variance in the highly expressed genes23,43, we performed several RNA-seq data transformations on the expression matrices: square-root transformation (used for the main figures), log transformation with a pseudo-count of 1 (log2(TPM + 1)), ‘regularized log’ transformation91 (rlog), and rank transformation (that is, genes were ranked by level of expression at each stage). To reduce potential outliers, the median abundance value of replicates was chosen to represent the expression level (eis).
The statistical significance of the resulting profiles was assessed using non-parametric permutation tests (flat line test, reductive hourglass test and one-sided pairwise TAI test), using the FlatLineTest(), ReductiveHourglassTest() and PairwiseTest() functions implemented in myTAI41. The P value defines (for each tested shape) the probability that the observed TAI pattern is drawn from a random set of TAI profiles with permuted gene ages. We defined ‘early’ stages as S1–2, ‘mid’ as S3–4, and ‘late’ as S5 in F. serratus, and ‘early’ stages as S1–4, ‘mid’ as S4.5, and ‘late’ as S5 in F. distichus, due to differences in developmental stage correspondence. These tests, including those for sex differences, were performed with 50,000 permutations.
For the pTAI analysis, we used the function pMatrix() implemented in myTAI41, which calculates the contribution of each gene to the TAI at each stage by multiplying the phylostratum of each gene by its expression level divided by the sum of expression of all genes, that is,
where, like TAI, psi denotes the relative gene age (phylostratum) for a given gene i and eis denotes the expression level of a given gene i at developmental stage s and n denotes the total number of genes. The elbow method was used to identify 500 genes with the highest TAI contribution in each developmental stage; genes driving the TAI value across all unicellular or multicellular stages were inferred via intersection. For consistency with the main TAI analyses, square-root transformation was applied before the pTAI analysis.
To investigate whether the transcriptome at the waist of the hourglass is composed of broadly expressed genes compared to other stages, we first indexed each gene by its relative expression specificity/breadth across development using tau48,49, that is,
where N is the number of stages, is the expression level of a given gene i normalized by the maximal expression value. A lower tau indicates low stage-specificity (in other words, broad expression), and vice versa. The resulting tau values across all genes are stratified into deciles (tau-stratum), which enables analogous comparisons to TAI. It should be noted that PS and tau are not correlated (Kendall’s τ ≈ 0.05 in both Fucus species), indicating that these metrics capture independent signals. In contrast to the TAI, the TSI captures the average expression specificity/breadth of a given transcriptome, weighted by the expression level of each gene, that is,
where tsi denotes the relative expression specificity/breadth (tau-stratum) for a given gene i, eis denotes the expression level of a given gene i at developmental stage s and n denotes the number of genes. The median abundance of replicates was chosen to represent the expression level (eis). Existing functions in myTAI were repurposed for this analysis.
To explore whether unicellular stages in Ectocarpus not only exhibited a young transcriptome, but also genes under relaxed purifying selection, we computed the TDI. In contrast to the TAI, the TDI captures the average gene selective pressure (divergence-stratum; based on deciled dN/dS ratios) of a given transcriptome, weighted by the expression level of each gene. The divergence-stratum of each gene in Ectocarpus was inferred from dN/dS ratios using orthologr43. In brief, one-to-one orthologues were inferred between Ectocarpus sp. 7 and Ectocarpus subulatus92, using best reciprocal hits, and the dN/dS ratio was computed using the default “Comeron” estimation method. Importantly, >一对直系同源的比较中有99%低于1的DN/DS比率,这表明我们正在量化纯化选择程度。接下来 ,将所有基因的DN/DS比率分为十分位,尺度范围从1(强纯度选择)到10(最弱的纯化选择) 。由于serratus和F. distichus之间的差异时间很短,因此无法从该分析中进行这种分析。400万年前93年 ,导致超过10%的基因为0。对于具有多种同工型的基因,使用了最古老的同工型的差异。
使用mytai41,我们计算了每个阶段的TDI ,如下所示,
其中DSI表示给定基因i的相对差异水平(差异) 。EIS一词表示在发育阶段s处给定基因I的表达水平。选择了重复的中值丰度代表表达水平(EIS)。
为了量化两个Fucus物种中胚胎阶段的转录组之间的总距离/相似性,我们计算了Pearson相关性 ,Spearman相关性,曼哈顿距离和Jensen -Shannon距离(JSD)度量 。由于在高维数据中计算距离的问题,因此采用了几个指标94。为了比较物种之间的表达水平,我们使用正源v2.5.495比较了正群(正源和副群)的表达水平(正交类和副群) ,在使用TXIMPORT V1.26.26.186导入RNA-Seq数据时,将基因视为同工型和正式基因作为基因。注意,使用长度差异TPM对表达进行定量 ,以避免物种之间不同基因长度的偏差 。使用正式群而不是一对一的直系同源物(通过诸如最佳相互命中之类的程序推断),因为正群还捕获了分类内的表达谱,从而涵盖了基因组中更多基因。使用RLOG91转换丰度数据。使用R96中的统计数据包中的COR()计算了相关矩阵 ,而曼哈顿和JSD指标是使用R软件包Philentropy v0.7.097计算的 。我们采用了相同的方法(使用对数转换的正群丰度)来比较两个fucus物种中卵果和胚胎阶段生命周期阶段之间的总体转录组距离/相似性,以确定L. digitata sporphyte的早期胚胎阶段之间的相应阶段。
为了探索基因功能,使用Intercoscan v5.61-93.098获得了GO项。然后 ,使用Fisher的精确测试统计数据,对TOPGO v2.48.099,100实现的基因(根据每个基因的部分TAI值,PTAII ,PTAII的局部TAI值,从每个基因的部分TAI值推断出)对GO富集分析进行了进行 。统计检验和显着性水平在文本和图例中指示。
有关研究设计的更多信息可在与本文有关的自然投资组合报告摘要中获得。
http://http://www.o-press.com/news/show-384.html/sitemaps.xml http://http://www.0517kq.com/news/show-8331.html/sitemaps.xml http://http://www.0517kq.com/news/show-8280.html/sitemaps.xml http://http://www.0517kq.com/news/show-8374.html/sitemaps.xml http://http://www.0517kq.com/news/show-8158.html/sitemaps.xml http://http://www.0517kq.com/news/show-8198.html/sitemaps.xml http://http://www.o-press.com/news/show-243.html/sitemaps.xml http://http://www.0517kq.com/news/show-8316.html/sitemaps.xml http://http://www.0517kq.com/news/show-8281.html/sitemaps.xml http://http://www.o-press.com/news/show-65.html/sitemaps.xml
本文来自作者[qingdaomobile]投稿,不代表青鸟号立场,如若转载,请注明出处:https://www.qingdaomobile.com/wiki/202506-27403.html
评论列表(4条)
我是青鸟号的签约作者“qingdaomobile”!
希望本篇文章《棕色藻类中的转录组小型》能对你有所帮助!
本站[青鸟号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览: 补充表1中描述了所使用的藻类菌株的细节。如先前所述,制备了Fucus胚胎78。简而言之,配子被允许在2升天然海水(NSW)中释放,并使用几个新南威尔士州浴室进行女配子和男配...